The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  2  2  2  2 2X  0  2  2  0 2X  0  0  2 2X 2X  X  X  X  X  2 2X  2  2  0  2 2X  2  X  X
 0 2X+2  0  2  0  0  2 2X+2 2X 2X 2X+2  2 2X 2X 2X+2  2  0 2X  2 2X+2  0 2X  2 2X+2 2X  0 2X+2  2 2X  0 2X+2  2 2X  0 2X+2  2  2  2 2X+2 2X+2 2X  0 2X+2  2  0  0 2X 2X 2X 2X  0  0  2  2 2X+2 2X+2 2X+2 2X+2  2  2  0  0 2X 2X 2X  0 2X+2  2  2  2  2  2  0 2X  2  2 2X+2  2  2 2X  0 2X  0 2X+2  2 2X+2  2  2 2X  0  0 2X  0
 0  0 2X+2  2 2X  2 2X+2 2X 2X  2 2X+2 2X  0 2X+2  2  0  0  2  2  0 2X 2X+2 2X+2 2X 2X 2X+2 2X+2 2X  0  2  2  0  2 2X+2  0 2X  2 2X+2 2X+2  2 2X+2  2 2X  0  0 2X 2X  0  2 2X+2 2X+2  2  2 2X+2 2X+2  2  0 2X 2X  0  0 2X 2X  0  2 2X+2  0 2X  2 2X+2  2 2X+2  2  2  0 2X 2X  0 2X  2  2 2X+2 2X+2 2X+2 2X+2  2  0  2 2X+2  2  2  2  0

generates a code of length 93 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 92.

Homogenous weight enumerator: w(x)=1x^0+94x^92+64x^93+80x^94+11x^96+4x^104+2x^108

The gray image is a code over GF(2) with n=744, k=8 and d=368.
This code was found by Heurico 1.16 in 0.703 seconds.